ENS: U.S., Canada Update Great Lakes Water Quality Protections


U.S., Canada Update Great Lakes Water Quality Protections (via Environment News Service)

WASHINGTON, DC, September 7, 2012 (ENS) – Provisions to deal with aquatic invasive species, habitat degradation and the effects of climate change are featured in the newly amended Great Lakes Water Quality Agreement signed by U.S. and Canadian officials today in Washington. The amended agreement…



Advertisements

OBJ: US Clean-tech Firm Opens Ottawa Office

An American water treatment technology firm says it plans to establish its Canadian presence by opening an Ottawa office and hiring 18 employees over the next three years.

via: Ottawa Business Journal, February 1, 2012

The local office of Koester Environmental Ltd. will be headed by Kevin Bloodworth, who was previously CEO of Ottawa-based Upcom.

“Our goal within 36 months is to expand beyond our environmental technology sales, maintenance and operation services,” Mr. Bloodworth stated.

The New York State-based firm plans to add original equipment manufacturing services to its offering.

Koester represents more than 30 manufacturers of water and wastewater treatment equipment, and handles their marketing, sales, service and maintenance in Ontario, New York and New Jersey.

The company has clients in several sectors, including first nation communities, oil and gas, mining and municipal government. Its business model takes a client from a product’s design, to systems installation and ongoing maintenance.

Before opening its Ottawa location, the company worked in Canada on a contractual basis. The company has been named a finalist for a 2012 Bootstrap Award by local business incubator Exploriem.

Scientific American: How the “Internet of Things” Is Turning Cities Into Living Organisms

When city services can autonomously go online and digest information from the cloud, they can reach a level of performance never before seen.

December 6, 2011

By Christopher Mims

When city services can autonomously go online and digest information from the cloud, they can reach a level of performance never before seen. First up, water systems that automatically know when it will rain and react accordingly.

With a little help from what’s called the Internet of Things, engineers are transforming cities from passive conduits for water into dynamic systems that store and manage it like the tissues of desert animals. By using the Internet to connect real-world sensors and control mechanisms to cloud-based control systems that can pull in streams from any other data source, including weather reports, these efforts enable conservation and money-saving measures that would have been impossible without this virtual nervous system.

Marcus Quigley, principal water engineer at the infrastructure engineering firm Geosyntec, has been tackling this problem using hardware from Internet of Things company ioBridge, whose Internet-connected sensors have been used in everything from location-aware home automation to tide gauges that tweet.

It may sound like a trivial problem, but the EPA estimates that the U.S. has $13 billion invested in wastewater infrastructure alone. More importantly, the majority of America’s largest cities–more than 700 in all–dump millions of gallons of raw sewage into our waterways every time it rains, because their sewer and stormwater systems were designed a century ago.

These overwhelmed cities include New York City, Detroit, Boston, Portland, St. Louis, Chicago, Seattle, Philadelphia, Washington, D.C., San Francisco, many other cities, mostly in the Rust Belt and New England. With the notable exception of Los Angeles, almost every major urban center in the U.S. is in need of a way to soak up rainstorms rather than dump them straight down the drain in a desperate attempt to prevent flooding.

That’s where “high performance” infrastructure–infrastructure that can react to its environment like a living thing–comes in.

“The conventional way to build a city is you build what you want, and then you get rid of water as quickly as possible,” says Quigley. Historically, that’s meant massive projects to redirect all the water sluicing down impermeable streets and concrete and into the Moria-like recesses of a city’s sewer system. Green infrastructure tries to control runoff on-site, rather than sending it below, through the use of “bioretention cells” and rain gardens, which absorb and filter the water into collections of plants and artificial wetlands.

High-performance green infrastructure takes things a step further, by anticipating demand for water storage and preparing a system accordingly. For example, in seven projects deployed in St. Louis and one in New Bern, North Carolina, Geosyntec integrated a building’s rainwater catchment system with software that uses weather predictions from the Internet to know when a basin should be partly emptied to accommodate incoming stormwater.

Many more projects of this kind are on the way, including installations in Washington, D.C. and New York City.

“Instead of trying to use what I consider sub-optimal passive systems to control these … components of the urban environment, what we’re doing is making decisions in real time to achieve specific environmental goals,” says Quigley.

Dynamic control of a rainwater catchment allows these basins to be used to their maximum without fear that they’ll be overwhelmed by weather events. Giving building planners the assurance that they’ll always have access to a free water supply means they can actually use it. And putting these on enough buildings could go a long way to solving the problem of combined sewer and stormwater systems being overwhelmed when it rains.

It’s early days for these kinds of systems, and managing runoff is just one of the applications they could be put to use.

“The big picture is that we are able to take any piece of information that is Internet-accessible, any feed, and integrate it into the logic of how we operate these components of our city,” says Quigley.

Geosyntec’s cloud-based infrastructure is just as important as the physical infrastructure it puts into place on-site. Led by software developer Alex Bedig, the company has created a general-purpose platform for handling all the relevant inputs, sending instructions to valves and other control points, and never, ever failing in an emergency.

Taken together, these physical and virtual systems are explicitly biomimetic, says Quigley.

“The intent of an active system is to take the built environment and have it perform as if it were natural. We’re fundamentally saying that passive systems are unable to do that in an optimal way. In many cases they are unable to do it at all.”

It’s a story we’ve heard in the energy industry for years–hence the notion that a dynamically managed “smart grid” is not only helpful, but absolutely essential for integrating our power-generating infrastructure with the natural world through renewables. The smart grid extends all the way down to the level of the individual through demand management for energy conservation, but these principles have yet to show up on the same scale in the management of physical resources like water.

Humanity has a sorry habit of neglecting its waste stream, whether its the 99% of precious rare earth elements we fail to recycle or the complete absence of curbside composting from most American cities. The handy thing about water is that, through evaporation, it recycles itself. Now all we have to do is make the best use of it we can while it’s coursing through our cities.

via: Fast Company

————————–

Publications and Projects by Geosyntec:

NRDC Report: 14 Cities Prove That Green Infrastructure Cleans Waterways, Cuts Costs and Greens Cities

WASHINGTON, DC — (Marketwire) — 11/16/11 — Cities of all sizes are tackling their water pollution problems, such as stormwater runoff and sewage overflow, by employing green infrastructure and design — and they will save money as a result, according to a peer-reviewed report released today by the Natural Resources Defense Council. The report provides detailed case studies analyzing how 14 cities are using these methods and encourages the EPA to advance these solutions nationwide later this year.

‘Every single day, millions of gallons of good water needlessly drain away, filling our waterways with sewage and urban pollutants, rather than replenishing our water supply,’ said NRDC Water Program Director David Beckman. ‘But it doesn’t have to be that way. By making our communities literally greener, we can make our water sources cleaner too — and with much greater return than conventional solutions.’

‘Rooftops to Rivers II‘ details common water pollution problems and provides case studies for 14 geographically diverse cities that can all be considered leaders for employing green infrastructure solutions to address their pollution problems. The cities featured in the report have improved their ability to manage stormwater and reduce runoff pollution, saved money and beautified their cityscapes by capturing rain where it falls.

‘Cities of all sizes are recognizing that green infrastructure — which stops rain where it falls — is the smartest way to reduce water pollution from storms,’ said Karen Hobbs, NRDC senior policy analyst. ‘It often only takes a fraction of an inch to trigger this kind of pollution. And the extreme weather we’ve seen in much of the country this year — from drought to floods and hurricanes — drives home the need for smarter solutions to our water woes.’

The 14 cities featured in the report are all positioned on a six-point ‘Emerald City Scale’ to assess how each of these trailblazing leaders is doing. They are listed here from the highest to lowest points scored:

  • Philadelphia, PA (6)
  • Milwaukee, WI (5)
  • New York, NY (5)
  • Portland, OR (5)
  • Syracuse, NY (5)
  • Washington, D.C. (5)
  • Aurora, IL (4)
  • Toronto, Ontario, Canada (4)
  • Chicago, IL (3)
  • Kansas City, MO (3)
  • Nashville, TN (3)
  • Seattle, WA (3)
  • Pittsburgh, PA (1)
  • Detroit Metro Area & the Rouge River Watershed, MI (1)

The six-point scale identifies the primary actions every city can undertake to maximize their green infrastructure investment, including: a long term green infrastructure plan for the city, a retention standard, a requirement to reduce existing impervious surfaces using green infrastructure, incentives for private-party action, guidance or other assistance in deploying green infrastructure, and a dedicated funding source.

Only one city, Philadelphia, is undertaking all six actions, but each city featured in the report is undertaking at least one.

Green infrastructure — in contrast to paved and other impermeable surfaces — stops runoff pollution from the start, by capturing rainwater and either storing it for future consumer use or letting it filter back into the ground, replenishing vegetation and groundwater supplies. Examples include green roofs, street trees, increased green space, rain barrels, rain gardens, and permeable pavement. These design solutions have the added benefits of beautifying neighborhoods, cooling and cleansing the air, reducing asthma and heat-related illnesses, lowering heating and cooling energy costs, boosting economies, and supporting American jobs.

The report details how green infrastructure is frequently more cost-effective than traditional approaches to addressing runoff, like pipes and holding tanks. The City of Philadelphia estimates that a traditional approach to its sewage overflow problems would have cost billions more than its state-approved green infrastructure plan, which will achieve comparable results as it transforms 34 percent of the city’s impervious surfaces to ‘greened acres.’ The American Society of Landscape Architects recently surveyed its members and found that green infrastructure reduced or did not influence costs 75 percent of the time. EPA’s own analysis shows that green infrastructure approaches save money for developers, communities and, the vast majority of the time, for new development.

Read more

via: Environmental Expert